4- Best Communication devices
Communication devices

4- Best Communication devices

Communication devices

Communication devices

Communication devices – The most familiar example of a communication device is the common telephone modem (from modulator/demodulator). Modems modulate, or transform, a computer’s digital message into an analog signal for transmission over standard telephone networks, and they demodulate the analog signal back into a digital message on reception. In practice, telephone network components limit analog data transmission to about 48 kilobits per second.

Communication devices – Standard cable modems operate in a similar manner over cable television networks, which have a total transmission capacity of 30 to 40 megabits per second over each local neighbourhood “loop.” (Like Ethernet cards, cable modems are actually local area network devices, rather than true modems, and transmission performance deteriorates as more users share the loop.)

Communication devices –  Asymmetric digital subscriber line (ADSL) modems can be used for transmitting digital signals over a local dedicated telephone line, provided there is a telephone office nearby—in theory, within 5,500 metres (18,000 feet) but in practice about a third of that distance.

Communication devices – ADSL is asymmetric because transmission rates differ to and from the subscriber: 8 megabits per second “downstream” to the subscriber and 1.5 megabits per second “upstream” from the subscriber to the service provider. In addition to devices for transmitting over telephone and cable wires, wireless communication devices exist for transmitting infrared, radiowave, and microwave signals.

See also: Sandboxie 5.46.2 Multilingual / 0.5.4 Plus Download

Communication devices – Peripheral interfaces

Communication devices – A variety of techniques have been employed in the design of interfaces to link computers and peripherals. An interface of this nature is often termed a bus. This nomenclature derives from the presence of many paths of electrical communication (e.g., wires) bundled or joined together in a single device.

Communication devices – Multiple peripherals can be attached to a single bus—the peripherals need not be homogeneous. An example is the small computer systems interface (SCSI; pronounced “scuzzy”). This popular standard allows heterogeneous devices to communicate with a computer by sharing a single bus.

Communication devices – Under the auspices of various national and international organizations, many such standards have been established by manufacturers and users of computers and peripherals.

Communication devices – Buses can be loosely classified as serial or parallel. Parallel buses have a relatively large number of wires bundled together that enable data to be transferred in parallel.

Communication devices – This increases the throughput, or rate of data transfer, between the peripheral and computer. SCSI buses are parallel buses. Examples of serial buses include the universal serial bus (USB). USB has an interesting feature in that the bus carries not only data to and from the peripheral but also electrical power.

Communication devices – Examples of other peripheral integration schemes include integrated drive electronics (IDE) and enhanced integrated drive electronics (EIDE). Predating USB, these two schemes were designed initially to support greater flexibility in adapting hard disk drives to a variety of different computer makers.

Communication devices – Microprocessor integrated circuits

Communication devices – Before integrated circuits (ICs) were invented, computers used circuits of individual transistors and other electrical components—resistors, capacitors, and diodes—soldered to a circuit board. In 1959 Jack Kilby at Texas Instruments Incorporated, and Robert Noyce at Fairchild Semiconductor Corporation filed patents for integrated circuits. Kilby found how to make all the circuit components out of germanium, the semiconductor material then commonly used for transistors.

Communication devices – Noyce used silicon, which is now almost universal, and found a way to build the interconnecting wires as well as the components on a single silicon chip, thus eliminating all soldered connections except for those joining the IC to other components. Brief discussions of IC circuit design, fabrication, and some design issues follow. For a more extensive discussion, see semiconductor and integrated circuit.

 

Communication devices – Design

Today IC design starts with a circuit description written in a hardware-specification language (like a programming language) or specified graphically with a digital design program. Computer simulation programs then test the design before it is approved. Another program translates the basic circuit layout into a multilayer network of electronic elements and wires.

 

Communication devices

Communication devices – Fabrication

The IC itself is formed on a silicon wafer cut from a cylinder of pure silicon—now commonly 200–300 mm (8–12 inches) in diameter. Since more chips can be cut from a larger wafer, the material unit cost of a chip goes down with increasing wafer size.

A photographic image of each layer of the circuit design is made, and photolithography is used to expose a corresponding circuit of “resist” that has been put on the wafer. The unwanted resist is washed off and the exposed material then etched. This process is repeated to form various layers, with silicon dioxide (glass) used as electrical insulation between layers.

Between these production stages, the silicon is doped with carefully controlled amounts of impurities such as arsenic and boron. These create an excess and a deficiency, respectively, of electrons, thus creating regions with extra available negative charges (n-type) and positive “holes” (p-type). These adjacent doped regions form pn junction transistors, with electrons (in the n-type regions) and holes (in the p-type regions) migrating through the silicon conducting electricity.

Layers of metal or conducting polycrystalline silicon are also placed on the chip to provide interconnections between its transistors. When the fabrication is complete, a final layer of insulating glass is added, and the wafer is sawed into individual chips. Each chip is tested, and those that pass are mounted in a protective package with external contacts.

Communication devices – Transistor size

The size of transistor elements continually decreases in order to pack more on a chip. In 2001 a transistor commonly had dimensions of 0.25 micron (or micrometre; 1 micron = 10−6 metre), and 0.1 micron was projected for 2006. This latter size would allow 200 million transistors to be placed on a chip (rather than about 40 million in 2001).

Because the wavelength of visible light is too great for adequate resolution at such a small scale, ultraviolet photolithography techniques are being developed. As sizes decrease further, electron beam or X-ray techniques will become necessary. Each such advance requires new fabrication plants, costing several billion dollars apiece.

follow on facebook
follow on linkedin
follow on Reddit

Communication devices – Power consumption

The increasing speed and density of elements on chips have led to problems of power consumption and dissipation. Central processing units now typically dissipate about 50 watts of power—as much heat per square inch as an electric stove element generates—and require “heat sinks” and cooling fans or even water cooling systems.

As CPU speeds increase, cryogenic cooling systems may become necessary. Because storage battery technologies have not kept pace with power consumption in portable devices, there has been renewed interest in gallium arsenide (GaAs) chips.

GaAs chips can run at higher speeds and consume less power than silicon chips. (GaAs chips are also more resistant to radiation, a factor in military and space applications.) Although GaAs chips have been used in supercomputers for their speed, the brittleness of GaAs has made it too costly for most ordinary applications. One promising idea is to bond a GaAs layer to a silicon substrate for easier handling. Nevertheless, GaAs is not yet in common use except in some high-frequency communication systems.