Environmental Studies - Energy Resources

Environmental Studies – Energy Resources

Energy is defined by physicists as the capacity to do work. Energy is found on our planet in a variety of forms, some of which are immediately useful to do work, while others require a process of transformation. The sun is the primary energy source in our lives. Besides, water, fossil fuels such as coal, petroleum products, water, nuclear power plants are sources of energy.

Growing Energy Needs

Energy has always been closely linked to man’s economic growth and development. Present strategies for development that have focused on rapid economic growth have used energy utilization as an index of economic development. This index, however, does not take into account the long-term ill effects on society of excessive energy utilization.

For almost 200 years, coal was the primary energy source fueling the industrial revolution in the 19th century. At the close of the 20th century, oil accounted for 39% of the world’s commercial energy consumption, followed by coal (24%) and natural gas (24%), while nuclear (7%) and hydro/renewable (6%) accounted for the rest.

Industrialization, urbanization, and unbelievable rise in human settlements have multiplied the energy requirement by several times. Modern lifestyle and man’s growing dependence on machines and equipment for his personal and professional work has added to the energy demand. Global oil demand continues to grow until 2040, mostly because of the lack of easy alternatives to oil in road freight, aviation and petrochemicals, according to WEO-2016, published by International Energy Agency.

Renewable Energy Resources

Renewable energy systems use resources that are constantly replaced and are usually less polluting. Examples include hydropower, solar, wind, and geothermal (energy from the heat inside the earth). We also get renewable energy from burning trees and even garbage as fuel and processing other plants into bio-fuels.

Wind Energy

The moving air or wind has huge amounts of kinetic energy, and it can be transferred into electrical energy using wind turbines. The wind moves the blades, which spins a shaft, which is further connected to a generator, which generates electricity. An average wind speed of 14 miles per hour is needed to convert wind energy into electricity. Windgenerated electricity met nearly 4% of global electricity demand in 2015, with nearly 63 GW of new wind power capacity installed.

Solar Energy

Solar energy is the light and heat procured from the sun. It is harnessed using an everevolving technologies. In 2014, global solar generation was 186 terawatt-hours, slightly less than 1% of the world’s total grid electricity. Italy has the largest proportion of solar electricity in the world. In the opinion of International Energy Agency, the development of affordable, inexhaustible, and clean solar energy technologies will have longer-term benefits.

Biomass Energy

When a log is burned we are using biomass energy. As plants and trees depend on sunlight to grow, biomass energy is a form of stored solar energy. Although wood is the largest source of biomass energy, agricultural waste, sugarcane wastes, and other farm byproducts are also used to produce energy.


Energy produced from water is called hydropower. Hydroelectric power stations both big and small are set up to produce electricity in many parts of the world. Hydropower is produced in 150 countries, with the Asia-Pacific region generating 32 percent of global hydropower in 2010. In 2015, hydropower generated 16.6% of the world’s total electricity and 70% of all renewable electricity.

Tidal and Wave Power

The earth’s surface is 70% water. By warming the water, the sun creates ocean currents and the wind that produces waves. It is estimated that the solar energy absorbed by the tropical oceans in a week could equal the entire oil reserves of the world – 1 trillion barrels of oil.

Geothermal Energy

It is the energy stored within the earth (“geo” for earth and “thermal” for heat). Geothermal energy starts with hot, molten rock (called magma) deep inside the earth which surfaces at some parts of the earth’s crust. The heat rising from the magma warms the underground pools of water known as geothermal reservoirs. If there is an opening, hot underground water comes to the surface and forms hot springs, or it may boil to form geysers. With modern technology, wells are drilled deep down the surface of the earth to tap into geothermal reservoirs. This is called direct use of geothermal energy, and it provides a steady stream of hot water that is pumped to the earth’s surface.